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SUMMARY

.

Tris report presents a new model for ray-optical retflection from the rough, ait/material interface
of u randomly rough surface. We review the curent understanding of light reflection fram rough sur.
faces and show how the unique features of this new model contribute.

The new maodet, instead of treating the rough, air/material interface as being composed ol randomly
oriented Nat microureas {Lacets), treats the interface as an ensemble of randomly oriented, randomly
curved microaress. These two models ave identical (physically) and are found to give the same results.
However, this new derivation leads to some new and usetul results. (1) A new visualization of the sur
face structure (an “average” irregularity) is conceived and p oved valid. An average teregularity s an
optically smaooth curved surface of revolution of a shape such that it gives the <ame distribution of
retlected light (when ireadinted by a uniform, wellcollimated beam) as that given by the actuz! rough.
surtace microsteugture (when ireshted by the actugl, nonuniform, wellcollimated beam)., (2 s
Tound that the shape of this sustace of revodution msy be grewtly restncted and sl be general enough
to represent apy physicaly realistic microstructure, () Modeling this average irrepubacity as an eltipsoid
of revolution gives a surfaee structure function that 1w more avcurate and useful than praviously existing
unes. (4) Unlike the “facer™ detivations, this derivation lends itself to 2 normahzaton giving the abso.
hite, instead of just the relative, retlectance-distribution funcion, '

Refection by this new interface mudel, combuned with sume Lambertian rellectnm, 1s tested ex.
tensively both within and without *he nominad plane of merdence on o varigty of commuonly decurring
rouph surfaces. This. we believe, s the int time a theary o ray rellection fam tee wtetlace 15 exten-
sively tested vutside the pominal plane of nwdence. Such rellection is of pacticular interest o laser
target designation syatems. Data for IM Black Velvet pant. soiled olive deab pamt cement, plywoad
and grass, were used, and the parameters ul the mudel were uvptumized o wive the best it of the mods!
(o the data, The compansens were i general reasonably good (s deviatwns of M0 o 38 percent), and
the discrepaneies could be mosily esplaned by the existence of grons devintions af wome of the measured
surtaees from the assumed surtace swuch as the enistenee of two surface matestals instead of just vne and
the extstence of a sipmbicant duectional dependence ol the sutfuce stravture Also, the normahieation was
verifled i a rough manner,
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NOMENCLATURE

Symbo!  Definition

A

l Unit vector pointing in the direction from which the light is incident.

T Unit vector pointing in the direction of reflection.

n Unit vector pointing in the direction of the microsurface normal.

i Zenith angle of incidence, relative to the macrosurface.

8, Elevation and azimuth angles of reflection, relative to the macrosurtace.

a4, < Zenith 2=3 azimuth angle +f the microsrfac» pormal, relative to the macrosurface.

s Zenith angle of incidence relative to the microsuriace.

¢ Angle between the microscopic and macroscopiv planes of invidence.

b Angle between the inadent polarizanon plane and the macroscopic plane of incidence.

n k Indices of refraction and absorption of the surface material,

8(s) Fresnel reflection coefficient ol the surface material (any subscript indicates the polarization
state ol the incident hght).

AA, A seil area on the mivrosurtace.

Dia} The surface structure function. or the relative amuount of micosuriace area vriented in 2
piven duection,

¢ Rativ of the axis revolved about to the avs revulved Tor the ellipsord of revedution average
surfacedrregulanty

p ) Radius of curvature of the sutface of revolotion average surface-itregulatity m the plane
through the mestson axis.

ALY Rahns of curvature of the surfave of tevoiunon avetage sucface drregulatity ue o plane pet:
pendicular tu the rotaism axts

Y BRRDF of budwesiienal refletted radrancedistnbution function. The ratw of the radiance
reflected (mto a chosen direction) 1o the ittadiance wcident i a collunated beam (from a
chosen direction).

f BRIDF o2 idirectional teflectedantensuy Qistnbution function, The tatro of the radiant
miensity [Wise™H] refevted Tinto a chiven ditectiony to the radant powet [W] incidem
(from 3 chasen divection). BRRDF = BRIDF an 0. Fot a Lamberan sutface. BRRDY =
Const. uecun))

Fere Companent of the BRIDF contnbuited by reflection from the rough aimatenal imerface.
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Symbol  Definition

fiL Lambertian component of the BRIDF.

Py Lambertian component of the directional-hemispherical reilectance. which is the ratio of
the total radiant power [W] reflected into all directions to the vadiant power incident {W|
(from a chosen direction).

a. The minimum value found during optimization for o, the rms of the difference between the
theoretical and experimental values of the BRIDF divided by the theoretical value.

INYRODUCTION

In this report, we wish to present seme contributions to the understanding of the reflection of
light from rough surfaces.® For simplicity. we consides only rough surfaces that are flat on a macro-
scopic levei but rough on 3 micruscopic level. The microscopic irregularities are a:sumed 1o have ran-
dom shape and distribution over the surface and no preferred orientation wm any direction slung the
plane of the macrosurface (a uniform, symmetric, rough surface). For perspective, the Tollowing brief
summary of the current understanding of light reflection from such surfaces is presented

Lambert's Law

The first theury of light scattering by a rough surface, Lambert's Law, can be denved by con
sidering the incident light ray to be “completely randomized” by the rough surface. By completely
randomized it meant a purely hypothencal situstion w which an incident ray emerges rom the sutlace
(unatrected by the air-material interface) aiter st being scattered wotropically and with equal hkelthood
from every point i the semifinite space bedow the surface plane  Lambert's Law states that the reflected

radissice (referenze 1) (W st (proj. em?)!) (or the familiar property of visual brightaess) is mvanant

with observation direction, and, for constant madent yrradizace, [W cm"'] 15 mvanant with adence
ditectson ®* Alzo, Lambert’s Law states that the reflected hight 15 vopolanzed and mdependent of .
cident polanzation. However, many surfaces do not even voguely follow Lamberts Law. The best
dilfusing surfaces known deviate a few percent {tefetences 2 and ) even at seto zenith angles of .
cidenice and reflection, and differ grosdy at zenith angles preater than 45 degrees There are two
mecharisms that ferd to randonnze the incident fight and thus tend to produce Lambertian -¢flection:
wultple reflection from the wreguianties of the toagh, aimatenal ntetface and muliiple s)attenng
from inhanogeneities within the matenal below the interface The multiple reflection mechamsn i
conudered secondary. since 11 s found {refereice 4) to contnbute only a Tew peivent to the reflection
from mug® dielectne surfaces. Most of this reffection may be from only double reflection and thus nu
tandomized completely.

*Thie work s supported by the Naval Air Sytiems Camtand onde: AMIRTASAG AWMIOY 228 1) 2030 1.ons Ay
Weapons Sydeme lavestigattoan, and AMS 13238770 20-334 601, Surface Tatpet Gandanie (dnale Gudance
Apphcatiemd

*PALan 2d to the (zadet, the urate nf each tem o quanuty will follow 1t an biackets  Area nots preceded 0 “poeyg ™

tefer o the ates of a wiface progcted onta a plane perpendiculat to the propagation htctien of the hight Oiher
arca Ui tefer to att atea upon 3 wirfxe




The multiple scattering is the primary mechanism for randomizing the incident light and acts as
follows. Light entering the surface material is somewhzt randonily scattered by refraction at the rough,
air/material interface. Then the light is randomly scattered one or more times by inhomogeneities within
the material. Finally. it is again somewhat randomly scattered by refraction upon exiting the interface.
(A similar mechanism has been evaluated numerically in reference 5.) Thus, three or more random
scatterings must occur, and three should greatly randomize the light. However, light is completely ran-
domized only after an infinite number of random scatterings: thus. some non-Lambertian light could
emerge. Also, it has been shown (reference 6) that the light becomes partially polarized (in contradic-
tion to Lambert’s Law) upon exiting the rough, air/material interface and that such polarization can be
quite pronounced at iarge zenith angles of reflection. Thus the light can be partially de-randomized
upon exiting the mnterface.

Lommeal-Sealiger Law

The above described multiple-scattering can be divided into scattering at the interface and scattering
below the surface. The below-surface scattering should contribute the most to the randomization of the
multiple-scattered light. Below surface scattering has been treated extensively (see references 7. 8, and 9
for sumrnaries). The LommelSeeliger Law was derived by considering only single, wsotropic scattering
by belowsurface scatterers and belowsurface attenuation betore and arter scattering, Even though light
icflected in this way is not at sl mndomezed, it was found to give only a siight deviation Irom Lambert’s
Law. The LommelSceliger Law was extended by including nnisouopic scatierirg {vanous “phase fune-
tions” for the scatterers) and double scattenng. Chandrasekhar (reference 10) succeeded in including all
vrders of multiple swattering below the surface. His results for some phase functons, especially the
wsottopic, 4id not deviate much from Lambert’s Law except at farge zenith angles of incidence and re-
flection.

Shadowing of parts of a Lambertian surfave by the surfuce iregabanties was also consdered (ref
crences 7 and 11}, Such shadowing tends 0 produce a peak retfleciion m the direction of the source,
hut s not usually a large effect.

Thus the above mechamisms may et produce perfectly Lambettian setlectiun, but the mperfec.
try cited cunnot fully gecount for the large deviations from Lambert’s Law found for many surfaces.

High- and Low-Refloctance Surfaces

Dark. st fow.refegtanve, dielevtne sortaces are found (o deiate the muost Hiom | ambert’s Law)
Far deelavtoes. the refleon from the air matenal intestace 1s tow {3 Tew percentt and saties bittle tor
vanoud matenials  The rest of the mondent hght (~ 93 percent) passer ito the surhuce matenal, where it
and thua the rellectanve. i stronghy affected by the absorption coefiivient, which vanes gréathy, wath the
matenal. H the cueificint 1 ngh. the belowsutiave rellectance van be sein, Teaving only the ntesface
reflectance. whach 1s atwavs low  Thus, for tow geffectance surfaces, rellection trom the mierface 1
much moate agedicani. Alto, this reflectinm 13 faund (tefetence 41 e be aimeat entirely ungle reflevtiom,
which &5 aot at all randonnized and thus might devtate grosaly from Lambett's Law,

Bouguer Fiset Theory

A theore for unghe e+flecton by g rough. ai matenal intetface wan byt presented Iy Bouguer
{referenve 12) ahaut 1760 The interface i modeded s consisting of tandomly anented. aphealiy Nat
faccts, each of which behaves ke 1 amall plane snrevs, refiecting a pratasn uof the hght ivident on o
as deterramed by Freanel's equations for wpecudar reflectinn at 3 flat Weelecioe mterface. Fae collimated
wcrdent hght. thase facets of anly one vreataty o can ceflact hght min a gven Jirectin Thas, sl ghi
i that directien has heen seflectod 1 exactly the wame wav. s gt st at il randonwred. and the te
flections by the facet mechanuin i not at all Lamberian

e v e o e o w0 st i Sy pa e




The Bouguer facet theory has been found ta explain much of the non-Lambertian reflectance and
has undergone considerable development. (1) The derivation uf the basic theory has been refined (re-
ferences 13 through 19). (2) Several models (references 13, 17, 18, and 20 through 22) have been tried
for the “microarea distribution function.” This is the function that gives the relative number of facels
oriented in any given direction, or, more precisely, the relative tota! facet surface area per unit solid
angle of surface normals pointed in any given directior:. This function governs the directional distribu-
tion of the scattered light. If the function is uniform with respect to the direction of the facet normals,
a diffuse-like distribution occurs. If most of the facers lie nearly parallel to the plane of the surface, a
nearly specular distribution cceurs. (3) Another development of the facet theory is the inclusion of
shadowing (references 11, 14, 17, 19, and 23): that is, some facets cannot contribute to the reflection
vecause they are in the shadow ¥ neighboring irregularities  The shadowing theory results i a “geo-
metrical attenuation factor,” the reflection in aqy direction being reduced by a complicated function ol
only the direction of incidence and reflection. Shadowing has been found (reference 19) to be the only
mechanism able to explain the sharp cutott of light near grazing reflection. (4) Another and recent de-
vclopment is the extension of tacet theory (reference 19) to cover reflection outside the plane [ iner
dence. However, there has been littte companson with measurements vutside ol the plane of inadence.

Other Mechonisms

There are some other mechansms possibly contabuting to roughsurtace retlection. There may be
randomly oriented facetike areas. “rough facets.” cach of which reflects as o hittle st Lambertan re-
flector (reference 16), resulting on more hght being seattered at ugher zenith angles oi weilection than
from the wdeal large Mat Lambertian switace. This nught be the vl the belowsaitace seattenng
onginated mostly from g depth that was much smaller than the ty peal size of the tacens

Thers may be reflection from a plasa. b wer beundary to the roughsurtace matenal. us, For ex.
ample. tor panted Nat surfaves. This i faund tretetence 243 to explain same reflection phenomena

There mav be Bouguerhhe Dicet reflection from below sutface ctacks. This 2 pe of retlectian
nroduces etfects differny from thowe al surface-Bicet retlecton and helps 1o explam some phenomena
trefereme 38}

Diftraction Mechanisim

The Buyguet mechansm ard the above mechansas are hased on 1y aplivs and thus requne tha
the size uf the sutface rregnlanties and al their radu of curvature be mauch greates than the wavelength
of the hght teeterences 26 and 271 This, of vounse. may nef abwagns be bue, so same o the tellection
may he explanable vehy by wave opts Bechmann and Sprachine trefereme I8) give the hasie thenn
af the apphication of Bifftaction theary to reflection from the tough mtenaee of 2 andamby sough su
face. Many phyuchs unpodant resulls ate obaimed in cloaed farm, but they are vomples and hanted
for examiple  nfimte senes vliten tesull, few polanzation phenemeny can he treated. and sha iwang has
to he pnered  One sery sgmuficant tesult of the ¢ffects of wave aptics 1 the Ravlegh Critenon eeter.
ences 14 and 11 This crtenen smphice that at ddose esough angles toprasing madénve an 2 ngh
sarface, which at all other angles of snondence tefects aocondimg 1o ray aptics, there will appeat a
peculal ethetioag varead by diffraction The largee the atregulazsties and thew aadin of vurvature, the
yailer the requited grasmg angle wall be. but the diffractonavsed specular reflection wall nifumaich
appear Relevant o 13y reflecteon at the ar 'matenal iterface, Reckmann abiaine 3 dowed form solaan
w the large secgulanty bt for 2 sutface charactenzed by 3 Cansaan duinbation of sicfoce hoghts and
an auto coticlation length alony the surface  Sweh a -haractenzation mctehy mmply s anothet nucinarea
dutabutun Qingtion.




On most real surfaces, the microstructure probably includes some parts whose reflection can be
approximated by ray optics and other parts whose reflection must be treated by physical optics. One
would suspect that usually the broad facet-like areas, being large and flat, could be treated by ray optics,
but ¢hat the corners and edges of these areas, being small and highly curved, must be treated by physical
optics. Much recent work (references 30 through 37) has been done on diffraction from edges and
corners, resulting in some simple expressions for the reflected light distribution and some ways for
experimentally separating the diffracted light from the ray-reflected light. The diffraction-scattered

light was predicted to be quite specular.

Rigorous Solutions of Maxwell's Equations

When the wavelength becomes large enough relative to the size of the scattering irregularity. dif-
{raction formulae such as those of Beckmann and Spizzichino (reference 28), based as they are on a
scaler wave equation, predict results that deviate significantly from the results obtained from a rigorous
application of Maxwell's equations. This topic has been the subject of much effort (and some contro-
versy) in the [EEE Journal of Antennae and Propagation during 1971, 1972, and 1973.

A Generslization

Altheugh deviations in some directions and for many surfaces are large. it appears (references 14,
17, 20, 38, and 39) that most of the reflection in most directions for most rough switaces is closely
approsimated by a combination of Lambertian reflestion from below the interface and simple (no shad-
owing) Bouguer reflection from interface facets. This is reasonable theoretically because: ditfraction
phenomena are generally fimited to a narrow region near the specular direction; shadowing produces
extremely large effects only near fow elevation angles of reflection: multiple-surfuce scattering is found
to he small: below-surfuce particle scattering tends to be nearly Lambertian; reflection from a below-
surface plane should usually be siall because of attenuation in the surface material: mirror reflections
from helow-surface Tacets will be somewhat randomized from entering and exiting the rough, air/material
interface: and the “rough-facet™ reflection cannot give really radical departures from Lambertian
retlection,

New Model for Ray-Thieory Reflection

This report presents a new madel for ray-theory reflection from the rough, air/material interfuce.
fnstead of vandomly oriznted fat micradreas (tacets), the surface structure is here modeled as an en.
semble of randomly oriented, randomly curved microareas. Singe for practical purposes any curved
area can be broken down into infinitesimal foets, the two models are identical (physically) and thus
must pive the same results, However, this new derivadion leads to some new and usetul results: that is,
4 new visualization of the surface structure (an “average™ irregularity) is conceived and proved valid: a
fiew . miore accutate, ad useful function representing the surface structure is discovered (resulting from
an ollipsoid of revolution as the “average™ irregularity ): and o wiy to normalize the resulting weflection
equations to gve the absolute, instead of just the relative. reflectance distribution iy found.

.

This mingel is then com™ine with some Lambertian reflection and tested on data from a partic:
ulay appiication of interest. The application of interest is to laser target designation systems. A laser
Hluminates a point ona target and o 1eceiver, on a picee o ordnance or on a fire control system. de-
tects the direction of the ifuminated point and directs the ardnance. The geometry for this application
consists of incidence from any aagle ol a polarized Jollimared beam onto a flat rough surlaee; observa.
tion Nom @ distance such that the illuminated arcais, Yor practical purposes, a point: and observation of
the reflected fight trom any direction. both within ana without the plane of incidence (we believe that
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this is the first time a theory of ray refle:stion from the interface is extensively tested outside the plane
of incidence). The model is limited to simply a combination of ray retlection from the rough. air/
material interface and Lambertiar reflection be.-ause this combination has been found (references 14,
17, 20, 38, and 39) to give most of the reflection in most directions from most surfaces, and because,
for the application to target designation systems, a2 mod.! is needed that gives only reasonable accuracy
for a wide variety of common rough surfaces and uses s few surface-related parameters as possible.
The comparison to the data was good. Discrepancies can generally be explained by gross deviations of
some of the measured surfaces trom the assumed sur¥ace, such as the existence of two surtace materials
instead of just one. ar e existence of a significast directional depandence of the surface structure.
The validity of the n»  ali, wion is verified. and ihe usefulness of the concept of an ellipsoid of revo-
lution as the average surface irregulanty is demonstrated.

Because of the geometry described above. the usual and most generally useful quantity for express-
ing the reflectance distribution is poorly applicable, so a'less generally used but more applicable quantity is
(W st L (proj. em?) Y /Wem? |

adopted. Nicodemus (reference 40) calls the unusual quantity the BRRDF, Lo
(bidirectional reflected-radiance-distribution function). or for short. the BRDF. I'r (bidirectional retlectance-
distribution function). 1t is defined as the radiance [W sr"(pmj. cmz)"] reflected into a given direction

per unit irradiance (W cm'zl incident on the surface from another given direction. This quantity involves
radiance, which is very useful because it has certain invariance properties (reference 41) upon transfor-
mation through optical systems and upon reflection from surfuace to surface. However, irradiance is a
density of light incident on a surface. and for our geometry, a reflectance-distribution function containing
such a density is not the most useful quantity. Much better for our purposes is the BRIDF, Iy~ (bidirer

tional reflected-intensity distribution function) (reference 42). 1t is defined as the radiant intensity [Wsr™!]
reflected into any specified direction from an illuminaied “point™ per unit radient flux [W] in the incident
beam. To find the more generally usetul BRRDFE (or BRDF). simply divide the BRIDF by the cosine of
the zenith (or sine of the elevation) angle of reflection,

Grganization of Report

This repoit is organized as follaws. For the derivation of the interfuce reflectance maodel, first the
reflection from a single curved microarea i derived. then an ensemble of microareas is formed. resulting
in & reflectancedistrihution function in terms of a surface structure functon, and the concept of an
“average” lrregularity is presented and validated. The model is put in teems of the laboratory coordinates,
and the Fresnel reflectance of the surface materiah s found. Next. a normalization procedure is imple.
nsented to make the reflectarce-hisinbution function an absolute quantity. and an cliipsoid of revolution
is used as a one-parmneter madel tor the average wegslanty, For the compadson to messurements, some
Lambertian reflection is added, and the resuling fourparameter reflecsion model is applied to reflectance-
distribution function measurements both within and witheut the naminal plane ot incidence on a variety
of rough surfaces,

INTERFACE REFLECTION MODEL
Reflection From a Single Microarea

Consider, as shown in tigure 1. a very small carved area QA on anweegulanty ot the roughsurface
microstructure. This wrea is chosen smiall enough that we can approximate the carvateres in all divections
on it by sechions of circles. (The curvattes of the circle sections may be different m difterent diraotiss
across the area) Also, the area is chosen small enough that the angles spanned by these circle sections are
very smail. This smaliness allows the specification of the orientation of 3A_ by a single suttace nonmal .

The direction of f is given (rela.ive to the planar macrosurface) by o zenith sngle @ ard an wanuth angle

o e e .

e




Figure 1.

\

Reflaction From g Curved Microares of the Flough-Surtace Awr/Matarial Interface.

A smati, opticaly smooth, slightly curved area AA= with a normat A in*arcepts the light truin
ar ates AA, of the Incident beam snd diverges it into Aw sterudians in 3 direction T such that

2 defined as shown in figure 1. Let the incident light be a narrow collimated beam originsting from a

A . . :
source in the dirrction L and let the incident light have 3 radiunt Mux {reference 1) of & [Wj spread (not
necessarily uniformly} over the beemi’s crasssectional area A0 At the point in A; where A s focated,

tet the mcident nomal irradiance® (T per unit arce projected perpendicular to the beami be E W (proj.

cmz}" j.

Let QA be optically smooth amd let its minimum dimension and its minimum radius of curvature be
much greater than the wavelength of the incident light., Then (references 26 and 27) ray theory applies. so

-2 , . . . .
*lereadiance [Wem ™™ ] v the Doy incident upon o wmt area of g surtuace. Inan unchaging meident beam, the jradianee
vartes with the ortentation of the wiefuve tangle ot incidenceY and s thus not o constant of the bram. “Nomal irradeance™

(W {peoj. cmzi'll is the srrudiance upon a sutface avtented noemal to the incident beum and thus is a constant af beam,

A A A [
ran g oxl
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AA, reflects as a section of a curved mirror surface: that is, of the incident light intercepted by AA_, a por-
tion 6(s.n,k) (determined by the Fresnel equations; n and k are the refraction and absorption indices,
respectively) is reflected into a small cone {represented for simplicity by the rectangular cross section cone

. - . L . . . . AR A
in figure 1) of solid angle Acw {sr] in a direction £ determined by the mirror reflection equation rx n = fxl

Th~ refle-ted ! _at is not, strictly speaking, in the form of a cone. It would be in the form of
a true cone it the curvature of AA_ did not vary with the direction on A, since AA; would then be

a spherical mirror, and the reflecied light would radiate from a definite point image (real or virtual de-
pending on the sign of the curvature). The vertex of this cone would lie along the reflection direction
at a distznwe. wefore or after AA_, avtermived by the magmiude and sign of the curvature of AA.

But since the curvature in peneral does vary with direction on AA_, the image point is smeared. But
the rays reflected trom AA_ (or their backward extensions in the case ol a virtual image) all pass

through a footballshaped volume of spaze aprroximately bounded in one direction by two points and
in the other direstions by the circumference of an area whose size is directly related to the size of
AA,. The two bounding pemts are the image peints for spherical mirrors of curvatures equal to the
mdxunum and minimum curvatures found on AA . Thus. except for the realistically impossible :ir-

cumstance of 2 pertectly zero maximum wr minimum curvature, the dimensions of this volume are finite.
Now, let the observe: be at infinity. To him. thi. voleme, vne smeared image. is eftfectively a point, and
thus tie reflected light is effectively a ‘rue cone. Also, this condition makes the position of the image
point irrelevant (for zonvenience, let the vone vertex lie on 3A ).

We can now quantity the light -ciected from QA as u radiant intepsity (radian: Nux per steiadian
radiating from a point source), since the light reflected from AA_ onginates effe *tively from a point.
This reflected radiant intensity {W st '] is derived i the curvatures o) AA_ as tallows, Of the in-
cident beam cross sectional area, the area intercepted by A is QA cos s [em?] . and thus QA et
3 radiant flux of €(s) k| AA_ cos s [W} into the small solid angle Aw [st] . giving the reflected radias
intensity | = 61(s) E| AA cos s/Aw (W)L Lenting AA_be smalt enough that it subtends only & simall
angle in any dlrcclwn abllows the curved lines Ala and &1, (see fgure 2y to be very acarly stiaight fines,
Thus. the approximation A = & Al holds, where M ,is dhe tine segiment furmed on A4 by the
intersection of AA_ with a plane pamlld to the nacrosurface and M is the tine s Nncm tormed on
AA_ by the intersection of AA . witit the plune vontaning the mucrosurtace normal k and the AA sur
face normal fi. Since these line segments are sections of circles, they can e given by M, = 0, L3 and
Al =g idal. where 0, and o, (defined positive) aie the radii of curvatuie of 3A L and 3z and s are
the ares cubtepded by ».\I‘, eed &1 Crespectively . Stretly. o, is not a radivs ol cuvature of QA because
itis not perpendicular to AA L but this dues not atlect the derivation. The reflected solid angle can be

given by Aw = cos 0 A0 AW [sr]. Substituting the abuve three expressions int | gives

ét{s.n k) lin COSS Gy
cos € A0 AV

[\st | th

Since @ and 2 are functions of 0. W, and §. the quantity 13a 32238 Ay | can be given by the Jacabian
determinamt Ja.2:0.¢) (in the hmu as the meremental angles approach soo)d,
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Figure 2. Specihication of the Shape of a Curved Microgred n Termy of Two Orthogonal Curved Lings.
A small, shightly curved slemant of surfate alea AA_ may be nersected by a plane paraltel to the macro-

wriace t0 1oerm the hae "‘lz with 3 curvature radws of a,. andd .\h" may be interiected by the plane
paratiel to fand C to torm the hine ‘“u with & curvature cadius of a,

Since a, 2.8, and 3 ate Tuncnons of valy the laboratosy coordimates 4, &, and W), amd 0 and K are
parameters of only the surlace matenal. the only quantities in equation (1) that depend on the size ot
shape of QA ate 0 and o, Thus, the surfage geometry appears in equation £1) only as the cutvatures

ol QA . Also, the size of QA does ot cater and may be disregarded.

Note that the denvation s sull valid of esther one or hoth of the hies A , and A]u have a curvature
spposite that shown w Ngure 2

concave, o saddle. Also, since radh of curvature are detined as positive and the Jacohian determmant s

used only in un absolute value, | rentans unchanged 3f the curvaiures of either AI“ or A e buth are
reversed,

Ensemblo of Microxress and the Surface-Structure Function

Conader the followmp madel or the sorfece microstructure Let the microsurface be continuously
curved and randomdy unditsticg, simlas o hill o meuntam topograply . Let it be uptically smoath amd

n

s —————

2. This fact lets equatin (1) apphy 1o a cuived area of any shape: convex.
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tet all curvature radii and irregularity sizes be much larger than the incident light wavelength. Let the
AA_ be any small area on this undulating surface. Under these conditions, equation (1) gives the reflec-
tion from each small area. Equation (1) may be applied to a discontinuous microstructure if one disre-
gards diftraction effects at corners and edges. This allows application ot equation (1) to a randomly
scratched surface, such as ground glass or 1oughened metal. and to a “‘globule pile™-like structure, such as
some diffuse spray-painted surfaces. Also, equation (1) may be applied to a surface containing flat facets
if one makes their curvatuie radii not quite infinite. A very wide variety of microstructures is thus in-
cluded. Finally, let the statictical properties be uniform with position on the surtace and independent of
direction along the surface (no wood-like grain or scratches with a preferred direction).

For given directions of illumination and observation, an observer, if his visual resolution were sharp
enough to resolve the surtace microstructure, would see the reflected light originating only from various
points scattered around the microstructure. These are points at which the microsurface normal happens
to be in the proper direction for reflection to the observer. Since the itluminated macrosurface area is
small and the receiver is at infinity. the relative locations of the reflecting points are irrelevant, and all
the reflected light may be treated as if' it originated from a single point. Thus we may speak of a re-

flected total radiant intensity 1. {W sr™'] equal to the sum of the radiant intensities contributed by the
individual reflecting points. Normals at the reflecting peints must all be parallel. so the reflection i; from

each point is given by equation {1) with the same values of 8.y 2. 2 and s. If for 4 particular combina-
uon of incidence and reflection directions, a given incident beam illuminates N reflecting points, the total
radiant intensity reflected in the specified direction is given by the ensemble

Mfisnk)y b Besnki by coss a.z -
by = E E — ,J 5——& 0,i %, (W™ {la)

. . . .- .
This equation may be sunplified by replacmg the normal nradiance £ [W (proj. em=) 'l mcident on each

. «) . .
reflecting point by an average normal ndnee ghvenby £ = h'A fWem™] . where b, {W] is the radiant
Huv ot the madent beam and Ay s the cossaectionabarea of the inadent beam. This does not require that

the medent Beamn be uniform but only €1 that a staristically lairge nuinber of reflecting points be illumins
ed and £2) ar the madent beam be wlorm enough so that no farge portion ot the incident flux 1alls
o only g few reflecting points, The total radint intensity thus becomes

: Stsnk) 1!" VN S , ar I W | | .
u nmrmemie s -~ E 0 u st (2}
1 s B i 0 \‘ @

L]

Il dependence on the surface matersal and luboratory geometry cun be separated mta one factor
and Al dependence i the surtace structute it i second Tactor this second Tactor would be a surfage-
structure function. Nottee that ll dependence of the surfiace structure is Tovalized 1 the summation
factor of equanion (2); however, this factor contins a dependence on the aboratory geometry: namely.
N vaties with incadence angle & This can he removed as Tollows: For normal incidence (incidence angle
# = 0) and a chosen direction ol retlection, consider the set of N reflecting points. Their curvatuie radii

products (o o, 13 1 « Nyhvompromise the summation factor in equation (1), As the incidence
angle mureases, t‘us same set m pumu reflects into g new diccction, The new radiant intensity s given

12




by equation (2) with different values of 8, ¥, a, J. etc., but with the same set of 0, ¢, in the summa-

tion factor. However, as the angle of incidence. 8, increases, the illuminated macrosurface area increases,
as !/cos B, and some points in the additional area also contribute to the reflection. So the summation
factor for the new radiant intensity must contain some additional 0,;0,; quantities. Assuming that the

surface is statistically uniform, these extra quantities will be statisticallv the same as the original set, and 2
the summation factor is merely increased by 1/cos . Thus equation (2) becomes %
N
R(s.nk) ; cos's az i I :
I, = I —E g0 W], 3
T cos 3 cos 8 <9.W) A £ . ai% | ] :
l:
i

and the incidence angle dependence has been separated from the summation factor. However, the symma-
tion factor still retains a dependence on tne laboratory geometry. namely, N is proportional to the cross-

sectional area Aj of the incident beam. This is easily compensated for by including the 1 /A, factor with
the summation factor.

Thus, the quantity

Nn
1
D) = Z— E 0, %z [dimensionless] )
|
i=1

is a surface-structure function, since it contains all the dependence on the surface structure and no de-
pendence on anything else. In general, this quantity is a function of both the coordinates, a and z. of
Ye microarea nc mal, but we are considering only surfaces whaose statistical properties are directionally
miform, and for such surfaces D would have no z-dependence. In the Bouguer facet theory and its
refinements, the surface-structure dependence is incorporated as a microarea-distribution function, which
is the relative amount of microarea oriented in a given direction or the probability density of a facet nor-
mal to be in a given direction, Like D. this function contains all the dependence on the surface structure
and no dependence on anything else. Since the two reflectance theories are identical physically, this
proves that D and the microarea distribution function must be the same, or at least proportional.

Equation (3) can be put in terms of a reflectance<distribution function by dividing by the incident

flux &, (W]. This gives the PRIDF (reference 42) £ (883} [se™']. Incorporating equation (4) in
addition gives

cos § az D) (W sr"/W] )
cos §§ cos @ RV ' )

f (BBN) = R(snk)

rls

(Division by sin 0 gives the BRRDF (reference 42) [W st {proj. em?) YW em™2)).
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Average Surface Irregularity i

it might prove useful if there could exist a single optically-smooth curved surface that would reflect
light in the same distribution as that reflected by the ensemble of ali the curved microareas comprising
the rough surface. This would mean that a randomly irregular surface could be treated as if it consisted
of a large number of small identical “average” irregularities or that a randomly irregulzr surface could be
treated as if it were a single large curved surface (for a uniformly intense incident beam of the same total
flux). Such an average irregularity would have to be a susface of revolution about the macrosurface
normal because of the assumed directional independence of the rough suiface statistics.

Mathematically, the question of the possible existence of such an average irregularity may be stated
as follows. Let p_(a) and p (a) be the radii of curvature for the average irregularity (defined as were,

respectively, 6, and o ,- for a curved microarea), and let C be a constant. There must exist a surface of

revolution whose DXa), given by

Da) = C,oa(a}pz(a) {dimensionless] , {6)

is the same as the D(a) resulting from equation (4). It may be. but is not obvious. that for any physically
realistic functioral form of D{a), given by equation (4), there exists a surface of revolution which, by
equation (6), can give this same functional form of D{a). It wiil be proved that this is indeed true and.
furthermore, that the shape of the surface of revolution can be very greatly restricted and still be general
enough to be able to give any physically realistic functional form of D{a).

The following restrictions may be applied to D{a)} to make it conform to physical reality.

1. D(a) must exist for all values of a at least between O and #/2. Any realistic rough surface will
have some microareas at any given value of a between 0 and /2.

(39

D(a) must be finite for all values of a, since no real surface would contain any perfectly flat or
perfectly cylindrical microarea. (In wave optics, all flat, rough surfaces produce a perfectly specular
reflection, of some magnitude. This produces a delta function in the reflectance-distribution function
and thus an infinite D(a) at one point. However, we are treating only ray optical reflection.)

3. Dfa) is positive for all values of a. This {ollows from equation (4), considering that ¢_; and o,

i
were defined such that they were always positive.

4.  D{a) must obviously be si1._le-valued. No physical quantity can have more than one value for itself
at the same point,

5. D{a) is continuous. Physical quantities never have perfect discontinuities.

Fust, it will be proved that there exists a surface of revolution that can give not only the functional
forms of D(a) that might result from equation (4). but also any physically realistic functional form of
IXa). Let h(x) be a curve that when revolved about x = 0 gives the surface of revolution (see figure 3).
The p, curvature radius is given by o, = Ixl. The p, curvature radius is the radius of curvature of h(x).

so it is given by p_ = [I + (W) 132/ 1"} (piimes indicate derivatives with respect to x). The angle a is

equal tu the negative slope angle ol h(x}): that is,a = tan~!(=h"). Substituting these expressions into
equation (6) gives

D(tan '(=h)] = Cixi[l + (n)?]¥3/i"1, (7

14
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Figure 3. The Concept of an "Average’’ Surface Irregularity. The "‘average’ surface
irregularity is generated by rotating the curve hix) about x = 0. It is an optically smooth
surface of revolutiors of a shape such that it gives the same distribution of reflected
light {when irradisted by a uniform, weli-collimated beam) as that given by the actusl
rough-surface microstructure (when irradiated by the actual, nonuniform, well-collimated
beam). The shape of hix} may be restricted to the general shape shown and still be
general enough to represent any microstructure. This general shape consists of the
slope being zero ut x = 0 and infinity at h = 0 and the curve between having no inflection
points or straight-line sections.

Substitution of p(x) = h'(x) gives

Ip'l/Ixl = C(1 + p*¥/D[tan (-p)]. (7a)
which is equivalent to

b= Cx (1 + p1YD [tan™ (p)] . p'x 3 0, (7b)

p'=Cx(l+p? )3!2/Dllun"(—p)l. p/x <0. (7¢)
Equations (7b) and (7¢) arc of the form p’ = tix,p). “A differential equation of this fornt has a solution

g p = p{x) through every point (x = x,. p = p,) with a neighborhood throughout whick f{x.p) is continu-

ous.” Since the f{x.p) of each of the above equations (s everywhere continuous, all points (. p,) have
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continuous neighborhoods, and a solution p = p(x) to each equation exists for all values of x. Since both
equations (7b) and (7c) have solutions for all values of x, equation (7a) must have a solution p = p(x)
for all values of x. Since

h(x) = fp(x)dx + C;

(C p isan arbitrary constant), and since p(x) exists for all values of x, then h(x) must exist. Thus, there

must exist a solution h = h(x) to equation (7) for any physically realistic D(a); that is, there must exist
a surface of revolution capable of representing any physically realistic rough surface.

é
%
k|
i
3

3
3
8

With this established, it will now be shown that not only is there an h(x) for every D(a): but that
also some limits to the form of h(x) can be established such that h(x) is still capable of giving any form
of D(a); that is, because of the nature of equation (7), certain options are allowed, the choice of one of
which will not limit the ability of h(x) to give any D{a). Two options are the arbitrary choices of two
boundary conditions for a second-order differential equation: one condition on h'(x) and one on h(x).
This is allowed because a solution to a differential equation is obviously still a solution when restricted
by a boundary condition, and the set of solutions h(x) for all forms of D{a) are obviously still solutions
for their respective forms of D(a) even though the same boundary condition is applied to every h(x). A
third option is the choice of a plus or minus sign for h"(x). This is allowed because only its abso'te
value appears in equation (7). Thus we have established some ways of limiting the shape of the surface
of revolution.

Thus far we have found two types of ways of limiting the functional form of h{x) while not limiting
its ability to give any physically realistic foim of D{a). These were three arbitrary options of restrictions
on h(x) resulting from the nature of equation (7) and five restrictions on D(a) resulting from physical
reality. These will be applied in the following way to determine a very limited type of curve for h{x).
but a type of curve that is still versatile enough (o give any physically realistic form of D(a). First, let
the boundary condition on h'(x) be h'(0) = 0. This makes the slope of h(x} zero at x = 0. Second. use
the option on the sign of h"(x) to make h"(0) negative. This forces the slope of h(x) to begin to de-
crease as X begins to increase (from zero). Third, the h(x) cannot have inflection points. It is did. the
same value of a would occur at different parts of the curve. Since D could have different values at these
two points, there would be two values of D for the one value of @. Thus D would be multiple-valued,
and restriction (4) would be violated. Fourth, the h{x) cannot be a straght line at any point. If it were.
p, would be infinite at that point and thus, by equation (6), D wouid be infinite, and restriction (2)

v <8 o S PURPLP NIRUPRR 3 * 7 AT AL &SI (o R
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would be violated. Thus far, the slope has been forced to be level (zero) at x = 0 and start to slope down

(decrease) as x starts to increase. Since h(x) can have no inflection points or straight-line segments, the

slope must continue to decrease with increasing x. Thus *he slope must become vertical (-#°) at a finite

valug of x (say. x,;). If the slope only approached verticat as x approached infinity, h(x) would approach
a straight line and D would approach infinity, and restriction (2) wo..d be violated (see the appendix for

l a rigorous verification of this contention). Last, let the boundary condition on h(x) be h(xq) = 0. This

| forces the vertically sloping part of h(x) to lie on the x-axis.

t

|

I

]

i

|

I

In summary, a limited functional form of h(x) capable of giving any physicaily realistic functional
form of D{a) resembles the curve in figure 5. This curve is level at x = 0, decreases with increasing X
without inflection points or straight sections, and becomes vertical as it crosses the xwaxis. Or. in terms
' of a. the curve is such that @ = 0 at x = 0, and a increases without stopping or turning back with increas-
ing X to becume a = 90Y at h = 0.

{t s instructive to be able to visualize the random topography of 2 rough surface as heing equivalent
o one large surfuce of revolution of very restricted shape, but what substantive contribution does this
make? [t does not put any limits on the tunctional form of the surface-structure function D{a), as we
have just proved. But it may give insight into the discovery of better models to represent the surface
structure. Indeed, as is shown later, the most obvious choice of & surface of revolution, an cllipsoid of
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revolution, gives a surface-structure function that is better than the existing ones. Perhaps other shapes
for the surface of revolution will give even better resul?s. Also, maybe ones involving two or more param-
aters will give very good higher order approximations. To derive the D(a) for any surface of revolution,
the procedure used later for the ellipsoid can be followed.

Mode! in Terms of Measurable Variables

For the result, equation (5), to be useful, the unmeasurable variables a, z, and s and the Jacobian J
st be found in terms of the measurable variables 8, 8, and ¥. The angles a and z can be found from
the reflection equation

A_A_AN A

rxn=nx/ (8)

since this is the condition that forces n{a.z) to be in a determined direction for light from a source in
A . A
the direction /(B) to be reflected in the direction r(¢.4). These three vectors are expressed as follows:

A A A

I=jsinf+kcospB, 9)

LA K A . A i
n=isinzsina+tjeoszsinat keosa, (10) §
A_D A ' .

r=|sm\.'/cnsO\\JcnsvcusO+Qsm0. {tn

Substituting these equations into eguation (¥} gives the fotlowing:

coszsinacos f-cosasinf=cos Yy confcosa -sind cos 2sina, (1)
-8 2 sina cos B = sin 8 sin 2 sina -sin v cos @ cos a, ") {1}
sin 2 8in g = sin woeon g cos 2 ~con v oeos @ sin . (14)

The a(g.0.9) and AB .d.0) can be tound by solving cquations ¢ 1Y) and (14), respectively. Then

an a =0y ocos Osn 7 fan @+ oo @) tE5)

a2 = sin W owos Oehnin B+ con U oo 3), (It

Equation {16) gives A8.0.0), and 1 this i used  equation (15), equation (I‘il pw\ alg @ .v). The

angle s can be found by substitwuing equations (8) and €103 e the refation I n ® C0s g
COS $ 2 eus 2 i a s o Coe o vos th

Since alg.l.0) and 238000 are iven by equations (131 amd (1e), tus gives 438 .0).¢

SGamitar evprosstons are denved by Torreme and Spattow treterenoe 191 Fo compare thew and v ety the
tollowsng vomenian betscen s and thest symbolisis was tound .

T&R 8 v D a.

.

1&S - Yt Qen v -

When equations 118), (16), and (1171 wete vonverted o the T&S swmbabinm and compared ta the cottespandmy e
pressiom of T&S, they were found to be very disamdar in tar. However, sumerwally they ompand whentwally
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With the use of equations (15) and (i6), the Jacobian determinant J can be evaluated: :
5 az \ _ -cos’z cos?a sin ¥ cosf (1 + sin 6 cos § + cos 6 cos ¥ sin ﬁ). (18) '
8w sin z (sin 6 + cos B)? (sin B + cos Y cos §)? '
This, however, was found numerically to be equal to
6

! ;’: B 4co-sc:Ssina' (19

Although it was difficult. this equivalence was also verified analytically,

{ - Microtres Reflaction Coefficient
_ : The &(s.n k) in equation (5) can be found from the Fresnel equations (with a complex index of

refraction). The reflectances &) and ﬁ“ for incident light lmearly polarized perpendicular and parallel 10

the local plane of incidence, respectively, are given (references 43 and, ir somewhat different form,
: reference 4d) by the folivwing:

.3 3
SinT(s - §4) + unh”Y

& (snk) = . (20)

smz(s t5,) smhzx

cmg(s +5,) ¢ smh"x
ﬂﬂls.n.k) & g {2
cn&I{s =5t snhey

where

085y =2 bisinhy .
with
b= ksingie® ¢ k3

c e -sinltll‘ul + k}).
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and n and k. res ctively, the real and imaginary components of the complex index of refraction of the
surface material. The k is sometimes called the absorption index of the surface material. Of academic
interest are s, and x, which come from Snell’s Law for a complex index of refraction.

sin s/sin(s, +ix) = n- ik

At s = 0, equations (20) and £21) are indeterminate. However, the solutions are found (reference 45) to
be

bl k
n“+k*t+1-2n

RL(O.nJ&) = M"(On,k) = (22)

Yy 3y
n"tke+ |+ 2n

The above expressions give & for light polarized relative 1o the local plane of incidence: however,
for laboratory measurements 8 must be determined for light polarized relative to the macroscopic plane
of incidence. since this is the usual way that the incident polanzation is specilied. The angle t}\ctwecn \
the macroscopic and local planes of incidence ¢ is the angle between their respective normals, 1 and I n
{see figure ), so @ is given by

A & oA
cus @ = i~/ X afsin s

Substituting equations {9) and (10) imo the abuve equation gives

COs O = (sin g cus a - cos § cus 2 uit alistn s, AR}
for which everything on the ught-hand wde has been tound  The ordentation of the wendent pulanzaiion
plane s spevitied by the angle . the angle that the wadent polanzation plane makes with the macrowopr

plane of wedence. The amgle 3 « @ i then the angle thal the ww ndemt podanzation plane makes wath the
tocal plaie of incidenve. For caleulatian of the reflectance of the inadent Tighi s pulanzation must be

resolved inte compoients peipendicular amd pavallel o the local plane of wncidence. A part sins{y - &
of the wacident light 1 polatized perpendicular o the local plane of mewdence Tor whsch the reflectance

w5 &jts) and a pant cos?ly = 91 uf the wident light 15 polasized parailel o the lwal plane of wcidence
for which the reflectance if ﬁﬁ(;! Thus the reflevtance of light palanzed at an angle ¥ frium the niacns:

wope plane of i tepce 8
Ky) = 810 Wty - 0) * Eyls) ity - ¢ (4

From th, the reflectance of light pelanzed parallel and perpendicular to the mactoscopic plane of w-
cdence s gaven by

Gyts) = @y = 0) = &(s) suuzo + 6y0s) Wil
nd .
“"h) 2 KRisy=wld) = “lls) nnlo . “H“' sm"O.

tespectively
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Figure 4 Relauon Between she Locs! and Macrowuttace Plane of locdonce  The vectney [ and i he

4 a
h e matroturtace plaie of iaciiknee, and [ et £ he e the local plane of incutence  The angle
batvaen these planes i wiudl 10 0 1the shgle Batwein thew noemghy)

The tefloctance #,13) of unpolansed or circulatly polanzed light, 1 umiply the average of & Y]

and iiq(s). unge byth unpolansed and arcwlaily polanized Light resolve into equal components petpen.

dicadar and paraliel to the local plane wt incdenye

“U(ﬂ - _‘:‘ “allﬂ * ﬁﬂl‘”

The above equatiens feveal no mnfurmation on the polatization torn ot the reffected higin 1 he re.
flected polartzation form s deursd. (tom Holl (refetence 49), the phawe shift hifference § between &,

and R“ s given, and from Shutchid€ (reference 46). the Mueler matnx (Contamag ﬂ!. tiﬂ. 5. and ¢) for

the polanzation transformation on reflection can be denved
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Normatization

Substituting equations {19) and (6) into eanration (5) gives

i Cag (@) pfe)

fis BP W) = &syank) p W srl/wy. (25)

cos i sina

As follows, the constant C can be found so as to make the reflected intensity-distribution function fiie

an absnlute quantity. Since the average irregularity is a surface of revolution, the region around a = 0
can be treated as 2 spherical mirror surface of radius p,(0). For normal incidence and reflection. it is

easy to derive the BRIDF for a spherical mirror. This, of conrse, must be equal to the BRIDF of our
model for noacal incidence and reflection f; (09:90°, 0°), and C can be found from this equality.

The tocal length of a spherical mirror is equal to half the radius, or -g;pa(O), and collimated
incident light reflects into a cone with the focal point as its veriex. A flux of ($/A)) AA [W] is in-

cident on 2 small arca AA on the top of a hemisphere. If the single large suriace of revolution is to
replace all the illuminated areas of the real surface. it must have uniformly intense light incident on all

parts of it and have no light missing it. Therefore, the area of its base npf(n/Z) [cmzl must equal the

incident beam cross-sectional area A, and thus ¢, AA/'(npf(n/l)) {W] is the flux incident on AA. Upon

reflection. this flux is attenuated by &(0) and is diverged into AA/ [-L- pa(())]2 steradians. Then K(Q)

multiplied by the above incident flux and divided b, :his nnmber of steradians gives the reflected radiant

intensity {W sr™!]. Additi~nally dividing this by @, [W] gwves the BRIDF for the spherical mirror:
[y, (0990°.0% = &(0) o7 (OV/[dm ] (a/1)] (W 5™ /W] (26)

For tue rough-surface model at normal incidence and reflection, 8 =0.0 = a/2.a= 0,5 =0, and
pZ(O) = 0 oceur, and equation (25), the BRIDF becomes

f,.0°009 0% = Le RMD) p (9) lim (p_(a)/sin a) (W seHwi. (27)
ris 4 a a—l) 2
Equating equations (26) and (27) and solv:ng for the normalization constant C gives

¢ = /)A(O)linpf(n;'l) linz) (py(a)/sin a)|. (28)
a— :
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Substituting this into equation (35) gives the normalized or absclute form for the BRIDF .*

i £,(0) p,(a) p,(a)

[ 88.4) = R(s;yaK) (W s ] (29)

dmcost p2(uf2) lim (p,(c)/sin a) sin a
a-’

Ellipsoid of Revolution Average Surtace lrregularity Approximation

It is not practicable to make direct measurements of the ¢ ; and o,; values or of p (a) and p,(a).

The best that one con do is to choose a reasonable model irregularity. A sphere is one possibility, but
it contains no parameter that one can vary to change the chavacteristics of the surface structure. An

eltipsoid of revolution, h = e(l - x2)" has one such parameter e, which is the ratio of the length of the
axis-rotated-about to the length of the axis-rotated. As e decreases, the model irregularity becomes
flatter and reflects more light in the specular direction. This is a very useful property, since the wide
variety of real surfaces contains a continuous distribution of diffuse-to-highly-specular surfaces. The
frls(B;GJJ/) for the ellipsoid of revolution is found by evaluating equation (29) as follows. The derivative
of h(x) for the ellipsoid is

h' = -ex(I -x)™” = ~tana.
Solving for x gives

X = tan 2 (tanza + ez)"/‘ = pz(a)
The second derivative of h(x) is

R = -g(l «x2)3R2 < ~¢ [l - tan®a/(tana + %)) 32,
The p,(a) is the radius of curvatuie of h(x) and is thus given by p _(a) = {1 + (8)*]32/1h"1. Substitut-

ing h" and h" this aquation gives

pa(a) = o2 {1+ tanza.)/(e2 + tanza)] N
The other components of equation (29) are found to be;

pa(O) = 1/eip,(n/2) = liand ('1’_[‘}) [pz(a)/sin al = lle.

Substituting the above expressions into equation (29) gives the BRIDF (reference 42) for the ellipsoid of
revolution—average irregularity.

*Onc could sxtend this model to include shadowing by simply multiplying equation (29) by Torrence and Spurrow's
shadowing fuctor (symbolism converted by use of the tuble in the footnote following equation (17)). This would
not affect the normalization, since their shadowing factor is normalized to equal one when no shadowing occurs,
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R0 k) ¢’
4mcos 8 2

fs B N) = (W sl w) (30)

(e2 cos“a + sin2a.):2

(Division by sin 8 gives the BRRDF [W sl (proj. em?)~H/W cm“zl )

Thus, with equation (30) we have a simple model giving the absolute BRIDF contributed by ray
reflection from the irregular microsurface.* Only three parameters are involved: the refractive index n
of the surface material, the absorption index k of the surface material, and the axis ratio e of the ellipsoid
of revolution—average surface irregularity representing the surface structure. All other quantities in equa-
tion (30) have been found in terms of the laboratory coordinates 8.8, and .

COMPARISON TO MEASUREMENTS

Earlier, we speculated that the concept of an average surface of revolution representing the surface
structure might give insight into the choice of a better surface-structure function. The first choice, the
ellipsoid of revolution, resulted in the surfacesstructure function given by the last term in equation (30).
Normalized to D{(a=8) = 1.it is

D(a) = ¢*/(e? cos?a + sina)?. (31)

Since this surface-structure function was shown to be equivalent to the microarea distribution function
used as the surface-structure function in the Bouguer facet theory. this function can be compared directly
to the others. Rense (reference 21) found a way to determine the microarea distribution functien from
the reflectance-distribution function measurements. Figure 5 presents his data for one rough surface,
along with plots of best fits for our structure function and three microarea distribution functions found
in the literature. The much closer fit to the data shows our function to be a significant improvement.

To test t~e accuracy of the model, to illusirate the value of the concepts derived. and to test the
applicability of the modei to laser target designation systenss, the model was combined as follows with

some Lambertiar reflaction and compared to BRIDF measur~ments made on a variety of rough surfaces.

The BRIDF contributed by the Lambertian reflection is simply given by
£ B89 = sin0p Bamin s, (32

where oL(ﬁ‘.'.’.n) {Lambertian directional-hemispherical retlectance (reterences 42 and 47)] is the portion

of the incident power scattered by Lambertian reflection. This quantity might vary significantly with
incidence angle. but for lack of any relationship. it will be assumed constant. This is added to equation
{30) to give the combined BRIDF:

£BOW) = £, (BON)+ £, BON)  [s7!]. (33)

*Equation (30) was found to compare to Torrence and Sparrow’s result. To compare the two results, our symbaolism
was transformed, the two surface structure functions were made equal to one, T&S's shudowing factor was removed,
and the BRIDE was transtormed to T&S's ratio of BRRDEs, This completed, the results were the same.
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Data taken from Rense (reference 21)
‘ Plot of our function 034/(92 cosza + sinza)2 (e = 0.40)
3 seesssesese  Plot of tunction e2/{e? cos?a + sina) e = 0.26), originated by Berry (refersnce 13}
Plot of function (cosAa)axp(-Az tanza) (A2 = 7.62} derived from Beckmann's {reference
emsemewmmme  28) result for a surface characterized by a Gaussian distribution of surface heights and an ;
autocorrelation length in the ray optics approximation
- e e emews  PlOt 0f function (c:.c:'s'-"c:t)exp(~A2 tan2a.) (A2 = 6.93) used by Sirohi (reference 22),
originated by Berry (reference 13} .
5 — - PlOt Of an approximation exp(~A2a2) (A2 = 0.0()21/degrees2) of - - « used by Rense '
5 {reference 21} for small values of a :
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A trial and crror optimization procedure was applied to relative BRIDF measurements made on a
number of surfaces. This optimization procedure consisted of a method of varying the four parameters
fe, n, k, and pL(B;Zn)] of the model (equation 33) until the minimum value 0., was found for ¢, which

is the root mean square normalized deviation of the experimental values from the theoretical values.

e S lfa-esyral|

where

M M

°=Zfrh in:

i=1 i=1

Xi is measured relative value of relative BRIDF . fr“ is the theoretical value: and M is the number of

measnrements on a given surface. The set of measurements Yor euch surface consisted of the following.
For each combination of values of 8 of 15, 30, 45, 60. 75, and 90 degrees and of § of 0, 15, 30, 45,
60, and 70 degrees, several values of ¥ were chosen. and the relative BRIDF was measured for collimated

6.328-Angstrom continuous wave laser light polarized perpendicular and parallel to the plane ot incidence.

This resurted in about 400 measurements for each surface. This number is statistically large. so the loca-
tion of o in the space of the four para..eters should not be sensitive to small random experimental
errors,

Table | gives ¢ and the corresponding (optimum) values of the parameters for o surface.

Figure 6 compares a small sample of the measurements to the model. A brief deseription of each surtace
and a discussion of the results is given in the following paragraphs,

The 3M Black Velvet paint is a very dull antireflection paint for optical instruments. The optimiza.
tion resulted in two very nearly equal minima of 0. The associated two sets of values for the parameters
of the model give nearly identical reflection patterns: therefore, reflection patterns are plotted. in figure
S, for only the first set of parameters listed in table 1. The model applied quite well, The curves com-
pared very well with the measured points in shape and magnitude. Ounly the dependence on incident

Table 1. Optimum Values of the Model Parameters

Parameter | 3M Black Vaivet Paint Dg:::ip(.)ll :\? Cement Plywood Grass
%0 0.250* 0.293* 0.345 0.200 0.186 0.328
oL 0.020 0.022 0.06 0.33 0.40 0.5
] 0.89 0.88 0.24 0.68 0.51 16
n 1.60 162 10 1.00 09 0.7
k 0.00 03 04 09 1.9 13

*Two minima for v were found.
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Figure 6. Comparison of Some Theoretical and Measured Vaiues of BRIDF for a Variety of Fiat Rough
Surfaces. Linearly polarized, collimated, 6,328-Angstrom, continuous-wave laser light was incident at an
3 angle § from the surface normal. The radiometar lunpolarized) observed the entire illuminated area of the
surface from an elevation angle ¢ above the surface and from an azimuth angle  from the plane of incidence.
On the plots, the BRIDF (reference 42) L (80,4} (retiected tlux per steradian per incident flux) is given
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by the radius vector from the origin to the point or curve, and v 1s given by the pelar angle. [The BRRDF
{reference 42), reflected radiance per incident irradiance, is given by f_ /sin 0.] Values for g and # for sach

" column of graphs are given at the top. The symbols x and @ indicate measured values of fd, and the
gontinuous solid and dashed curves give the theoretical plots of frl tor the incident hght polarized
respactively perpendicular and parallel to the plune of incidence.
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polarization gave a consistent error. However, this error was small for most points. Also, from the ab-
solute values of BRIDF given by the mode!, the directional-hemispherical reflectance (sum of flux scattered
in all directions per incident flux from one direction) at normal incidence can be estimated and was found
to be of the order of magnitude of 4 percent. This is consistent with the measured directional-hemispher-
ical reflectance value ot 2.5 percent. Also, under a microscope. the surface appeared as an irregular pile
of little spheres, which is consistent with the optimum ellipsoid axis ratio of e = 0.89, which is very

nearly that of a sphere (e = 1). The difference could be caused by the sphere sagging slightly into ellipses
when they were still liquid.

The dirtied olive drab paint was a sample of a slightly glossy dark olive drab paint. It was soiled by
placing dry soil on its slightly dampened surface and shaking off all that would not stick. The model
applied rather poorly. The shapes of the curves and the dependence on incident polarization were only
roughly similar, and the magnitude was systematically erroneous for many curves. However, the directional-
hemispherical reflectance at normal incidence, estimated from the ahsolute values of BRIDF given by the
model, is of the order of & percent, which is consistent with the measured value of 4 percent. Also, the
ellipsoid axis ratio e is very small, as it should be for a glossy surface: that is, a glossy surface should
have a large portion of its microsurface area with normals near the microsurface normal, as does a very
flat ellipsoid of revolution. Much of the poor performance of the model might be because there are two
types of reflecting surfaces: the paint and the soil. The optimization assumed only one.

The cement surface consisted of common structural concrete cement troweled flat and allowed to
harden in a horizontal position. The surface appeared to be slightly varied in shades of light grey. The
model applied very well. There were no systematic errors. The small random errors could easily be
attributed to the varied nature of the surface, since the illuminated area of the surface was not necessarily
the same for each measurement. This is consistent with the fact that no such random errors occurred
during the parts of the measurement program in which the illuminated area remained the same. The
illuminated area remained the same for only cases in which either the incident polarization was varied or
when  was varied at § = 0. The directional-hemispherical reflectance at normal incidence. estimated
from the absolute values of BRIDF given by the model. is of the order of SO percent. which is cousistent
with measured values ranging from 30 to SO percent for various samples of concrete.

The plywood surface was clean and unaged. It had an irregular grain whose width was about equal
to the diameter of the laser beam. A large portion of the grain was oriented nearly parallel to the fibers
of the wood. Throughout the measurements, the plane of incidence remained parallel to the fibers. The
mode. applied fairly well. The directional-hemispherical reflectance at normal incidence, estimated from
the absolute values of BRIDF given by the model. is of the order of 70 percent, which is reasonable,
since the surface appears to be highly retlecting. Also, the lowest o of any surface vccurred, and the

grainy nature of the surface could easily account tor the little remalning deviation if’ the deviation were
random. Howsver, much of the deviation causing 6, was systematic. The dependence on incident
polarization did not compare very well, and the experimental points deviated in the form of u bulge
whose maximum appeared to shift from y = 90% toy = 180 us g varied from O to Y0 degrees. Thus
type of systematic error would result from this particular directional dependence ol this surface’s
microstructuie,
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The grass surface was a piece of sod with fine. denzely spaced blades of grass. The blades were noi
stnall enough relative to the laserbeam diameter to avoid a large random error in the measurements. Thus,
only the statistical properties of the measurements are significant. The large O, is probably due mostly

to this random error. However, a significant systematic error was discernible. Also, from the absolute
vatues of BRIDF given by the model, the directional-hemispherical reflectance at normal incidence was
estimated to be of the order of 60 percent, which is inconsistent with the 5 to 20 percent measured for
several samples of grassy meadow. However, a value of e much larger than unity is realistic: that is, the
surfaces of the blades of grass tend to be vertical, resulting in a concentration of the riicrosurface arca
at high angles from the macrosurface. and the model irregularity with an e greater than 1 also has this

property.

For all the surfaces. the optimization gave large values for k: greater than 0.3. Such values occur
only for metals (reference 44). and these surfaces are obviously dielectric. Even a value of k of only
0.01 occurs (reference 5) only for an extremely highly absorbing dielectric such as black glass. in which
95 percent of the energy is absorbed while traveling a distance of only 25 wavelengths. In one paper
(reference 48), optimization involving k resulted in zero valucs for dielectrics. In the present optimiza-
tion (finding the values of the parameters giving the minimum overall deviation between theoretical and
experimental data), a trough ot minima was found in the space of the parameters n and k. For each
surface, the bottom of this trough was nearly level, making the n k optimization somewhat uncertain.
Also, this trough intersected the k = 0 axis. 1t is possible that the position of the minimum found along
the trough for each surface was 4 random occurrence resulting from random errors in the experimental
data and that the actual minimum was at k = 0. For one surface. the 3M Black Velvet, two minima
were found, one at k = 0.

Surmmarizing the comparison of the model to the measurements, it has been shown that the com-
parison is in general reasonably good and that discrepancies can be mostly explained by the existence of
gross deviations of some of the measured suefaces from the assumed surface, such as the existence of
two reflecting surface materials instead of just one and the existence of a significant directional depend.
ence of the surface structure. Since most of the data were taken outside the plane of incidence, these
results tend to verify, outside the plane of incidence, the ability of interface plus Lambertian reflection
to give most of the reflection m most directions for most surfaces, Also, it bas been shown that the
ellipsoid of revolution average surface ieregularity is a usetul concept, since (1) for many surfaces, one
can visualize the ellipticity of the representative ellipsvid, and (2) the ellipsoid gives an improved surface
structure funtion. Last, there has been some verifleation of the correctiess of the nonmalization, sinee
the optimization was done on relative data. and the results usually gave absolute directional diemispher-
ical reflectances comparable to typical meusured values.

CONCLUSIONS

The Tollowing dgnificant conclusions may be drawn about the rayoptics theoty of light reflection
from 3 tough, ait/material interface.

1. The facet representation ol the rongh interface must give the same reflection as the actual inter.
face. which s made ap of curved surfaces.

[ 3

For any given tough srlace, there exizts a single vptically snooth cutved susface of revolution
{average awregularity ) of very restnicted shape that will reflect light in the ame distnbution as
that ceilected by the rough interface.
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Modeling this average irregularity as an ellipsoid of revolution gives a surface structure function
that is much more accurate and useful than previously existing ones.

There now exists a reflectance model that can be normalized giving a reflectance-distribution
function that is absolute, and the normalization has been verified experimentally.

The combination of ray reflection from the rough interface plus some Lambertian reflection
applies rather well outside the plane of incidence as well as within it for a variety of commonly
occurring rough surfaces.
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APPENDIX
PROOF THAT x IS FINITE WHEN
THE SLOPE OF h(x) IS VERTICAL

The contention that x is still {inite when the slope of h(x) is vertical can be more rigorously
verified by the following derivation of the upper bound x, on the value of x at which h'(x) = o,
Equation (7) can be rewritten as

h'(x) = Cx [I + (1)) D).

which upon integration gives a monotonically decreasing function h'(x) provided that 0<D{a)<eo, A
tower bound on h"(x)!is given from

WS CxhFiDe,

where D® is the upper bound on Dia). Since both hix) and h"(x) are negative, we have
WY S e,

which upon integration gives
li(h':,)l< HTN > e (‘(.\f + \::H)'.

where by and hy are values of the dope hiv) at v aad ay. respectively. Finally, k) = == occurs at

some value ol x,, where
- \, 1Yy
Xy 2 8 (57 ¥ DO

This proves the contention, since the expression on the ngint i 2 Ninite upper bound on X,
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